Abstract

Non-invasive phototherapy has been emerging as an ambitious tactic for suppression of amyloid-β (Aβ) self-assembly against Alzheimer's disease (AD). However, it remains a daunting challenge to develop efficient photosensitizers for Aβ oxygenation that are activatable in a deep brain tissue through the scalp and skull, while reducing side effects on normal tissues. Here, we report an Aβ targeted, low-dose X-ray-excitable long-afterglow scintillator (ScNPs@RB/Ab) for efficient deep-brain phototherapy. We demonstrate that the as-synthesized ScNPs@RB/Ab is capable of converting X-rays into visible light to activate the photosensitizers of rose bengal (RB) for Aβ oxygenation through the scalp and skull. We show that the ScNPs@RB/Ab persistently emitting visible luminescence can substantially minimize the risk of excessive X-ray exposure dosage. Importantly, peptide KLVFFAED-functionalized ScNPs@RB/Ab shows a blood–brain barrier permeability. In vivo experimental results validated that ScNPs@RB/Ab alleviated Aβ burden and slowed cognitive decline in triple-transgenic AD model mice at extremely low X-ray doses without side effects. Our study paves a new pathway to develop high-efficiency transcranial AD phototherapy. Statement of significanceNon-invasive phototherapy has been emerging as an ambitious tactic for suppression of amyloid-β (Aβ) self-assembly against Alzheimer's disease (AD). However, it remains a daunting challenge to develop efficient photosensitizers for Aβ oxygenation that are activatable in a deep brain tissue through the scalp and skull, while reducing side effects on normal tissues. Herein, we report an Aβ targeted, low-dose X-ray-excitable long-afterglow scintillators (ScNPs@RB/Ab) for efficient deep-brain phototherapy. In vivo experimental results validated that ScNPs@RB/Ab alleviated Aβ burden and slowed cognitive decline in triple-transgenic AD model mice at extremely low X-ray doses without side effects.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.