Abstract

AimsMicroRNAs (miRNAs) are transported on high-density lipoproteins (HDLs) and HDL-associated miRNAs are involved in intercellular communication. We explored HDL-associated miRNAs concentration gradients across the coronary circulation in stable and unstable coronary artery disease patients and whether changes in the transcoronary gradient were associated with changes in HDL composition and size. MethodsAcute coronary syndrome (ACS, n=17) patients, those with stable coronary artery disease (stable CAD, n=19) and control subjects without CAD (n=6) were studied. HDLs were isolated from plasma obtained from the coronary sinus (CS), aortic root (arterial blood) and right atrium (venous blood). HDL-associated miRNAs (miR-16, miR-20a, miR-92a, miR-126, miR-222 and miR-223) were quantified by TaqMan miRNA assays. HDL particle sizes were determined by non-denaturing polyacrylamide gradient gel electrophoresis. HDL composition was measured immunoturbidometrically or enzymatically. ResultsA concentration gradient across the coronary circulation was observed for all the HDL-associated miRNAs. In ACS patients, there was a significant inverse transcoronary gradient for HDL-associated miR-16, miR-92a and miR-223 (p<0.05) compared to patients with stable CAD. Changes in HDL-miRNA transcoronary gradients were not associated with changes in HDL composition or size. ConclusionHDLs are depleted of miR-16, miR-92a and miR-223 during the transcoronary passage in patients with ACS compared to patients with stable CAD.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call