Abstract

Transconductance (gm) enhancement in n-type and p-type nanowire field-effect-transistors (nwFETs) is demonstrated by introducing controlled tensile strain into channel regions by pattern dependant oxidation (PADOX). Values of gm are enhanced relative to control devices by a factor of 1.5 in p-nwFETs and 3.0 in n-nwFETs. Strain distributions calculated by a three-dimensional molecular dynamics simulation reveal predominantly horizontal tensile stress in the nwFET channels. The Raman lines in the strain controlled devices display an increase in the full width half maximum, and a shift to lower wavenumber confirming that gm enhancement is due to tensile stress introduced by the PADOX approach.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.