Abstract

In most video platforms, such as Youtube, Kwai, and TikTok, the played videos usually have undergone multiple video encodings such as hardware encoding by recording devices, software encoding by video editing apps, and single/multiple video transcoding by video application servers. Previous works in compressed video restoration typically assume the compression artifacts are caused by one-time encoding. Thus, the derived solution usually does not work very well in practice. In this paper, we propose a new method, temporal spatial auxiliary network (TSAN), for transcoded video restoration. Our method considers the unique traits between video encoding and transcoding, and we consider the initial shallow encoded videos as the intermediate labels to assist the network to conduct self-supervised attention training. In addition, we employ adjacent multi-frame information and propose the temporal deformable alignment and pyramidal spatial fusion for transcoded video restoration. The experimental results demonstrate that the performance of the proposed method is superior to that of the previous techniques. The code is available at https://github.com/icecherylXuli/TSAN.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.