Abstract

In the 1980’s, work by Coleman and by Giddings and Strominger linked the physics of spacetime wormholes to ‘baby universes’ and an ensemble of theories. We revisit such ideas, using features associated with a negative cosmological constant and asymptotically AdS boundaries to strengthen the results, introduce a change in perspective, and connect with recent replica wormhole discussions of the Page curve. A key new feature is an emphasis on the role of null states. We explore this structure in detail in simple topological models of the bulk that allow us to compute the full spectrum of associated boundary theories. The dimension of the asymptotically AdS Hilbert space turns out to become a random variable Z , whose value can be less than the naive number k of independent states in the theory. For k > Z , consistency arises from an exact degeneracy in the inner product defined by the gravitational path integral, so that many a priori independent states differ only by a null state. We argue that a similar property must hold in any consistent gravitational path integral. We also comment on other aspects of extrapolations to more complicated models, and on possible implications for the black hole information problem in the individual members of the above ensemble.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.