Abstract

In this same journal, Coons published recently a paper [The transcendence of series related to Stern's diatomic sequence, Int. J. Number Theory6 (2010) 211–217] on the function theoretical transcendence of the generating function of the Stern sequence, and the transcendence over ℚ of the function values at all non-zero algebraic points of the unit disk. The main aim of our paper is to prove the algebraic independence over ℚ of the values of this function and all its derivatives at the same points. The basic analytic ingredient of the proof is the hypertranscendence of the function to be shown before. Another main result concerns the generating function of the Stern polynomials. Whereas the function theoretical transcendence of this function of two variables was already shown by Coons, we prove that, for every pair of non-zero algebraic points in the unit disk, the function value either vanishes or is transcendental.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.