Abstract

Leukotrienes are mediators of inflammation that belong to a family of lipids derived from arachidonic acid by the action of 5-lipoxygenase. Leukotrienes have been detected in the central nervous system in association with different pathological events, but little is known about their biosynthesis or function in the brain. When rat neurons and glial cells in primary culture were stimulated with the calcium ionophore, no significant biosynthesis of leukotrienes was detected using liquid chromatography/mass spectrometry (LC/MS) techniques. However, when exogenous LTA(4) was added to these cultured cells, both neurons and glia were able to synthesize LTC(4). Activated neutrophils are known to supply LTA(4) to other cells for transcellular biosynthesis of cysteinyl-leukotrienes. Since neutrophils can infiltrate brain tissue after stroke or traumatic brain injury, we examined whether neutrophils play a similar role in the central nervous system. When peripheral blood neutrophils were co-cultured with rat neurons, glia cells, and then stimulated with calcium ionophore, a robust production of LTC(4), LTD(4), and LTE(4) was observed, revealing that neurons and glia can participate in the transcellular mechanism of leukotriene biosynthesis. The formation of LTC(4) through this mechanism may be relevant in the genesis and progression of the inflammatory response as a result of brain injury.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.