Abstract

The authors investigate quantisation and feedback of channel state information in a multiuser (MU) multiple-input multiple-output (MIMO) system. Each user may receive multiple data streams. The authors design minimises the sum mean squared error (SMSE) while accounting for the imperfections in channel state information (CSI) at the transmitter. This study makes three contributions: first, the authors provide an end-to-end SMSE transceiver design that incorporates receiver combining, feedback policy and transmit precoder design with channel uncertainty. This enables the proposed transceiver to outperform the previously derived limited feedback MU linear transceivers. Second, the authors remove dimensionality constraints on the MIMO system, for the scenario with multiple data streams per user, using a combination of maximum expected signal combining and minimum MSE receiver. This makes each user's feedback independent of the others and the resulting feedback overhead scales linearly with the number of data streams instead of the number of receiving antennas. Finally, the authors analyse the SMSE of the proposed algorithm at high signal-to-noise ratio (SNR) and large number of transmit antennas. As an aside, the authors show analytically why the bit error rate, in the high SNR regime, increases if quantisation error is ignored.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call