Abstract
In this paper, we propose a joint transceiver design for single-carrier frequency-domain equalization (SC-FDE) based multiple-input multiple-output (MIMO) relay systems. To this end, we first derive the optimal minimum mean-squared error linear and decision-feedback frequency-domain equalization filters at the destination along with the corresponding error covariance matrices at the output of the equalizer. Subsequently, we formulate the source and relay precoding matrix design problem as the minimization of a family of Schur-convex and Schur-concave functions of the mean-squared errors at the output of the equalizer under separate power constraints for the source and the relay. By exploiting properties of the error covariance matrix and results from majorization theory, we derive the optimal structures of the source and relay precoding matrices, which allows us to transform the matrix optimization problem into a scalar power optimization problem. Adopting a high signal-to-noise ratio approximation for the objective function, we obtain the global optimal solution for the power allocation variables. We illustrate the excellent performance of the proposed system and compare it to that of conventional orthogonal frequency-division multiplexing MIMO relay systems based on computer simulations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.