Abstract

We introduce two basic notions, ‘transboundary extremal length’ and ‘fat sets’, and apply these concepts to the theory of conformal uniformization of multiply connected planar domains. A new short proof is given to Koebe's conjecture in the countable case: every planar domain with countably many boundary components is conformally equivalent to a circle domain. This theorem is further generalized in two direction. We show that the same statement is true for a wide class of domains with uncountably many boundary components, in particular for domains bounded byK-quasicircles and points. Moreover, these domains admit more general uniformizations. For example, every circle domain is conformally equivalent to a domain whose complementary components are heart-shapes and points.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.