Abstract

ObjectivesTransauricular vagal nerve stimulation (taVNS) at 40 Hz attenuates hippocampal amyloid load in 6-month-old amyloid precursor protein/presenilin 1 (APP/PS1) transgenic mice, but it is unclear whether 40-Hz taVNS can improve cognition in these mice. Moreover, the underlying mechanisms are still unclear. Materials and Methods6-month-old C57BL/6 (wild type [WT]) and APP/PS1 mice were subjected to 40-Hz taVNS. Novel Object Recognition and the Morris Water Maze were used to evaluate cognition. Hippocampal amyloid-β (Aβ)1-40, Aβ1-42, pro–interleukin (IL)-1β, and pro–IL-18 were measured using enzyme-linked immunosorbent assays. Hippocampal Aβ42, purinergic 2X7 receptor (P2X7R), nucleotide-binding oligomerization domain–like receptor pyrin domain containing 3 (NLRP3), Caspase-1, IL-1β, and IL-18 expression were evaluated by western blotting. Histologic assessments including immunofluorescence, immunohistochemistry, Nissl staining, and Congo red staining were used to assess microglial phagocytosis, neuroprotective effects, and Aβ plaque load. Results40-Hz taVNS improved spatial memory and learning in 6-month-old APP/PS1 mice but did not affect recognition memory. There were no effects on the cognitive behaviors of 6-month-old WT mice. taVNS at 40 Hz modulated microglia; significantly decreased levels of Aβ1-40, Aβ1-42, pro–IL-1β, and pro–IL-18; inhibited Aβ42, P2X7R, NLRP3, Caspase-1, IL-1β, and IL-18 expression; reduced Aβ deposits; and had neuroprotective effects in the hippocampus of 6-month-old APP/PS1 mice. These changes were not observed in 6-month-old WT mice. ConclusionOur results show that 40-Hz taVNS inhibits the hippocampal P2X7R/NLRP3/Caspase-1 signaling and improves spatial learning and memory in 6-month-old APP/PS1 mice.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call