Abstract

IntroductionTo date, most animal studies of myocardial ischemia have used open-chest models with direct surgical coronary artery ligation. We aimed to develop a novel, percutaneous, minimally-invasive, closed-chest model of experimental myocardial infarction (EMI) in the New Zealand White rabbit and compare it with the standard open-chest surgical model in order to minimize local and systemic side-effects of major surgery.MethodsNew Zealand White rabbits were handled in conformity with the "Guide for the Care and Use of Laboratory Animals" and underwent EMI under intravenous anesthesia. Group A underwent EMI with an open-chest method involving surgical tracheostomy, a mini median sternotomy incision and left anterior descending (LAD) coronary artery ligation with a plain suture, whereas Group B underwent EMI with a closed-chest method involving fluoroscopy-guided percutaneous transauricular intra-arterial access, superselective LAD catheterization and distal coronary embolization with a micro-coil. Electrocardiography (ECG), cardiac enzymes and transcatheter left ventricular end-diastolic pressure (LVEDP) measurements were recorded. Surviving animals were euthanized after 4 weeks and the hearts were harvested for Hematoxylin-eosin and Masson-trichrome staining.ResultsIn total, 38 subjects underwent EMI with a surgical (n = 17) or endovascular (n = 21) approach. ST-segment elevation (1.90 ± 0.71 mm) occurred sharply after surgical LAD ligation compared to progressive ST elevation (2.01 ± 0.84 mm;p = 0.68) within 15-20 min after LAD micro-coil embolization. Increase of troponin and other cardiac enzymes, abnormal ischemic Q waves and LVEDP changes were recorded in both groups without any significant differences (p > 0.05). Infarct area was similar in both models (0.86 ± 0.35 cm in the surgical group vs. 0.92 ± 0.54 cm in the percutaneous group;p = 0.68).ConclusionThe proposed model of transauricular coronary coil embolization avoids thoracotomy and major surgery and may be an equally reliable and reproducible platform for the experimental study of myocardial ischemia.

Highlights

  • To date, most animal studies of myocardial ischemia have used open-chest models with direct surgical coronary artery ligation

  • Experimental coronary infarction and ischemia of the myocardium may be produced in many animal species and in various ways

  • All experimental myocardial infarction (EMI) procedures were performed with the animals under dissociative anesthesia with a mixture of ketamine (35 mg/kg) and xylazine (5 mg/kg) i.m. [8]

Read more

Summary

Introduction

Most animal studies of myocardial ischemia have used open-chest models with direct surgical coronary artery ligation. We aimed to develop a novel, percutaneous, minimally-invasive, closed-chest model of experimental myocardial infarction (EMI) in the New Zealand White rabbit and compare it with the standard open-chest surgical model in order to minimize local and systemic side-effects of major surgery. Appropriate animal models are essential in order to investigate the mechanisms of myocardial infarction and develop new therapeutic interventions. Experimental myocardial ischemia (EMI) has been one of the most extensively studied topics in modern cardiovascular research. Most animal studies on EMI have employed the traditional open-chest platform with thoracotomy and direct surgical ligation of the left coronary artery. Open-chest procedures allow direct access to the heart with visual inspection of procedural results, while immediate contact to the epicardial coronary vessels provides the opportunity for accurate measurements of coronary blood flow and other relevant hemodynamic parameters [4,5]

Objectives
Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.