Abstract

The pyridoxal form of alanine racemase of Bacillus stearothermophilus was converted to the pyridoxamine form by incubation with its natural substrate, D- or L-alanine, under acidic conditions: the enzyme loses its racemase activity concomitantly. The pyridoxamine form of the enzyme returned to the pyridoxal form by incubation with pyruvate at alkaline pH. Thus, alanine racemase catalyzes transamination as a side function. In fact, the apo-form of the enzyme abstracted tritium from [4'-3H]pyridoxamine in the presence of pyruvate. A mutant enzyme containing alanine substituted for Lys39, whose epsilon-amino group forms a Schiff base with the C4' aldehyde of pyridoxal 5'-phosphate in the wild-type enzyme, was inactive as a catalyst for racemization as well as transamination. However, when methylamine was added to the mutant enzyme, it became active in both reactions. These results suggest that the epsilon-amino group of Lys39 participates in both racemization and transamination when catalyzed by the wild-type enzyme.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call