Abstract

This paper proposes a new energy management model for residential buildings to handle the uncertainties of demand and on-site PV generation. For this purpose, the building energy management system (BEMS) organizes a transactive energy (TE) market among plug-in electric vehicles (PEVs) to determine their charge/discharge scheduling. According to the proposed TE framework, the PEV owners get reimbursed by the BEMS for the flexibility they offer. In this regard, the PEV owners submit their response curves for reimbursement upon arrival. Then, the BEMS solves an optimization problem to maximize its own profit and determine the real-time TE market-clearing price. Afterward, based on the clearing price, the real-time scheduling of PEV batteries and the reimbursements to the PEV owners for their responses are determined. Additionally, the original mixed-integer non-linear optimization problem is reformulated as a mixed-integer linear programming one using a set of linearization techniques. Finally, the proposed model is applied to a residential building with 50 PEV charging piles, and the simulation results show that the proposed model decreases the actual charging payment of PEV owners by 17.6% and 52.3%, and the total cost of BEMS by 5.1% and 10.8% compared to demand response concept-based and uncontrolled charging models, respectively.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.