Abstract

Transactivation of the rat apical sodium-dependent bile acid transporter (ASBT; Slc10a2) by 1alpha,25-dihydroxyvitamin D(3) [1,25(OH)(2)D(3)] via the vitamin D receptor (VDR), was studied. Levels of ASBT protein and mRNA were low in the duodenum and high in the ileum, and both were induced by 1,25(OH)(2)D(3). The nuclear receptor protein, VDR, was present uniformly in the duodenum, jejunum, and ileum of the rat small intestine. The physiological relevance of ASBT induction by 1,25(OH)(2)D(3) was assessed by measuring absorption of cholylsarcosine, a non-metabolized synthetic bile acid analog, from duodenal or ileal closed loops of the perfused rat small intestine preparation. Absorption of cholylsarcosine was much greater from the ileal segment (28-fold that of the duodenum under control conditions) and was enhanced with 1,25(OH)(2)D(3) treatment. Transient transfection analysis of the rat ASBT promoter in Caco-2 cells revealed concentration-dependent enhancement of luciferase reporter activity after treatment with 1,25(OH)(2)D(3). The activation by 1,25(OH)(2)D(3) was abrogated after site-directed mutagenesis or deletion of the vitamin D response element (VDRE) in the ASBT promoter. Gel-shift mobility assays of nuclear extracts from rat ileum showed that both rat retinoid X receptor and VDR were bound to the VDRE. The results indicate that rat ASBT gene expression is activated by 1,25(OH)(2)D(3) by specific binding to the VDRE and that such activation enhances ileal bile acid transport. Human ABST mRNA and promoter activity were also increased in Caco-2 cells treated with 1,25(OH)(2)D(3), suggesting a physiological role of VDR in human ileal bile acid homeostasis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.