Abstract
With the advent of cloud computing, many applications have embraced the ensuing paradigm shift towards modern distributed key-value data stores, like HBase, in order to benefit from the elastic scalability on offer. However, many applications still hesitate to make the leap from the traditional relational database model simply because they cannot compromise on the standard transactional guarantees of atomicity, isolation, and durability. To get the best of both worlds, one option is to integrate an independent transaction management component with a distributed key-value store. In this paper, we discuss the implications of this approach for durability. In particular, if the transaction manager provides durability (e.g., through logging), then we can relax durability constraints in the key-value store. However, if a component fails (e.g., a client or a key-value server), then we need a coordinated recovery procedure to ensure that commits are persisted correctly. In our research, we integrate an independent transaction manager with HBase. Our main contribution is a failure recovery middleware for the integrated system, which tracks the progress of each commit as it is flushed down by the client and persisted within HBase, so that we can recover reliably from failures. During recovery, commits that were interrupted by the failure are replayed from the transaction management log. Importantly, the recovery process does not interrupt transaction processing on the available servers. Using a benchmark, we evaluate the impact of component failure, and subsequent recovery, on application performance.KeywordsCloud computingkey-value storetransaction processingOLTPfault tolerancefailure recovery
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.