Abstract
In this article, we introduce TAS (Transactional Auto Scaler), a system for automating the elastic scaling of replicated in-memory transactional data grids, such as NoSQL data stores or Distributed Transactional Memories. Applications of TAS range from online self-optimization of in-production applications to the automatic generation of QoS/cost-driven elastic scaling policies, as well as to support for what-if analysis on the scalability of transactional applications. In this article, we present the key innovation at the core of TAS, namely, a novel performance forecasting methodology that relies on the joint usage of analytical modeling and machine learning. By exploiting these two classically competing approaches in a synergic fashion, TAS achieves the best of the two worlds, namely, high extrapolation power and good accuracy, even when faced with complex workloads deployed over public cloud infrastructures. We demonstrate the accuracy and feasibility of TAS’s performance forecasting methodology via an extensive experimental study based on a fully fledged prototype implementation integrated with a popular open-source in-memory transactional data grid (Red Hat’s Infinispan) and industry-standard benchmarks generating a breadth of heterogeneous workloads.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: ACM Transactions on Autonomous and Adaptive Systems
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.