Abstract

This paper studies how to improve the performance of main memory multicore OLTP systems for executing transactions with conflicts. A promising approach is to partition transaction workloads into mutually conflict-free clusters, and distribute the clusters to different cores for concurrent execution. We show that if transactions in each cluster are properly scheduled, transactions that are traditionally considered conflicting can be executed without conflicts at runtime. In light of this, we propose to schedule transactions and reduce runtime conflicts, instead of partitioning based on the conventional notion of conflicts. We formulate the transaction scheduling problem to minimize runtime conflicts, and show that the problem is NP-complete. This said, we develop an efficient scheduling algorithm to improve parallelism. Moreover, for transactions that are not packed in batches, we show that runtime conflict analysis also helps reduce conflict penalties, by proposing a proactive deferring method. Using standard and enhanced benchmarks, we show that on average our scheduling and proactive deferring methods improve the throughput of existing partitioners and concurrency control protocols by 131% and 109%, respectively, up to 294% and 152%.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call