Abstract

User relationship prediction in the transaction of Blockchain is to predict whether a transaction will occur between two users in the future, which can be abstracted into the link prediction problem. The link prediction can be categorized into the positive one and the negative one. However, the existing negative link prediction algorithms mainly consider the number of negative user interactions and lack the full use of emotion characteristics in user interactions. To solve this problem, this paper proposes a negative link prediction algorithm based on the sentiment analysis and balance theory. Firstly, the user interaction matrix is constructed based on calculating the intensity of emotion polarity for social network texts, and a reliability weight matrix (noted as RW‐matrix) is constructed based on the user interaction matrix to measure the reliability of negative links. Secondly, with the RW‐matrix, a negative link prediction algorithm is proposed based on the structural balance theory by constructing negative link sample sets and extracting sample features. To evaluate the performance of the negative link prediction algorithm proposed, the variable management method is used to analyze the influence of negative sample control error and other parameters on the accuracy of it. Compared with the existing prediction benchmark algorithms, the experimental results demonstrate that the proposed negative link prediction algorithm can improve the accuracy of prediction significantly and deliver good performances.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.