Abstract

With dual capacities for unlimited self-renewal and pluripotent differentiation, pluripotent stem cells (PSCs) give rise to many cell types in our body and PSC culture systems provide an unparalleled opportunity to study early human development and disease. Accumulating evidence indicates that the molecular mechanisms underlying pluripotency maintenance in PSCs involve many factors. Among these regulators, recent studies have shown that long non-coding RNAs (lncRNAs) can affect the pluripotency circuitry by cooperating with master pluripotency-associated factors. Additionally, trans-spliced RNAs, which are generated by combining two or more pre-mRNA transcripts to produce a chimeric RNA, have been identified as regulators of various biological processes, including human pluripotency. In this review, we summarize and discuss current knowledge about the roles of lncRNAs, including trans-spliced lncRNAs, in controlling pluripotency.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.