Abstract

Trans-spinal direct current (tsDC) stimulation is a modulator of spinal excitability and can influence cortically elicited muscle contraction in a polarity-dependent fashion. When combined with low-frequency repetitive cortical stimulation, cathodal tsDC [tsDC(-)] produces a long-term facilitation of cortically elicited muscle actions. We investigated the ability of this combined stimulation paradigm to facilitate cortically elicited muscle actions in spinal cord-injured and noninjured animals. The effect of tsDC-applied alone or in combination with repetitive spinal stimulation (rSS) on the release of the glutamate analog, D-2,3-(3)H-aspartate (D-Asp), from spinal cord preparations in vitro-was also tested. In noninjured animals, tsDC (-2 mA) reproducibly potentiated cortically elicited contractions of contralateral and ipsilateral muscles tested at various levels of baseline muscle contraction forces. Cortically elicited muscle responses in animals with contusive and hemisectioned spinal cord injuries (SCIs) were similarly potentiated. The combined paradigm of stimulation caused long-lasting potentiation of cortically elicited bilateral muscle contraction in injured and noninjured animals. Additional analysis suggests that at higher baseline forces, tsDC(-) application does not increase the rising slope of the muscle contraction but causes repeated firing of the same motor units. Both cathodal and anodal stimulations induced a significant increase of D-Asp release in vitro. The effect of the combined paradigm of stimulation (tsDC and rSS) on the concentration of extracellular D-Asp was polarity dependent. These results indicate that tsDC can powerfully modulate the responsiveness of spinal cord neurons. The results obtained from the in vitro preparation suggest that the changes in neuronal excitability were correlated with an increased concentration of extracellular glutamate. The combined paradigm of stimulation, used in our experiments, could be noninvasively applied to restore motor control in humans with SCI.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.