Abstract

Resveratrol (RSV), a biologically active plant phenol, has been extensively investigated for cancer prevention and treatment due to its ability to regulate intracellular targets and signaling pathways which affect cell growth and metastasis. The non-specific interactions between RSV and cell membranes can modulate physical properties of membranes, which in turn can affect the conformation of proteins and perturb membrane-hosted biological functions. This study examines non-specific interactions of RSV with model membranes having varying concentrations of cholesterol (Chol), mimicking normal and cancerous cells. The perturbation of the model membrane by RSV is sensed by changes in water permeability parameters, using Droplet Interface Bilayer (DIB) models, thermotropic properties from Differential Scanning Calorimetry, and structural properties from confocal Raman spectroscopy, all of which are techniques not complicated by the use of probes which may themselves perturb the membrane. The nature and extent of interactions greatly depend on the presence and absence of Chol as well as the concentration of RSV. Our results indicate that the presence of RSV decreases water permeability of lipid membranes composed of 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC), indicating a capability for RSV in stiffening fluidic membranes. When Chol is present, however, (at 4:1 and 2:1mol ratio DOPC to cholesterol), the addition of RSV has no significant effect upon the water permeability. DSC thermograms show that RSV interacts with DOPC and DOPC/Chol bilayers and influences their thermotropic phase behavior in a concentration-dependent manner, by decreasing the main phase transition temperature and enthalpy, with a phase separation shown at the higher concentrations of RSV. Raman spectroscopic studies indicate an ordering effect of RSV on DOPC supported bilayer, with a lesser extent of ordering in the presence of Chol. Combined results from these investigations highlight a differential effect of RSV on Chol-free and Chol-enriched membranes, respectively, which results constitute a bellwether for increased understanding and effective use of resveratrol in disease therapy including cancer.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call