Abstract

High saturated and trans fatty acid intake, the typical dietary pattern of Western populations, favors a proinflammatory status that contributes to generating insulin resistance (IR). We examined whether the consumption of these fatty acids was associated with IR and inflammatory markers. In this cross-sectional study, 127 non-diabetic individuals were allocated to a group without IR and 56 to another with IR, defined as homeostasis model assessment-IR (HOMA-IR) >2.71. Diet was assessed using 24-h food recalls. Multiple linear regression was employed to test independent associations with HOMA-IR. The IR group presented worse anthropometric, biochemical and inflammatory profiles. Energy intake was correlated with abdominal circumference and inversely with adiponectin concentrations (r = -0.227, P = 0.002), while saturated fat intake correlated with inflammatory markers and trans fat with HOMA-IR (r = 0.160, P = 0.030). Abdominal circumference was associated with HOMA-IR (r = 0.430, P < 0.001). In multiple analysis, HOMA-IR remained associated with trans fat intake (β = 1.416, P = 0.039) and body mass index (β = 0.390, P < 0.001), and was also inversely associated with adiponectin (β = -1.637, P = 0.004). Inclusion of other nutrients (saturated fat and added sugar) or other inflammatory markers (IL-6 and CRP) into the models did not modify these associations. Our study supports that trans fat intake impairs insulin sensitivity. The hypothesis that its effect could depend on transcription factors, resulting in expression of proinflammatory genes, was not corroborated. We speculate that trans fat interferes predominantly with insulin signaling via intracellular kinases, which alter insulin receptor substrates.

Highlights

  • High energy and high fat intake characterizes the diet of numerous Western populations

  • Several findings indicate that this value is adequate to identify insulin resistance; this subset showed higher body adiposity and plasma concentrations of glucose and IL-6, as well as lower concentrations of HDL cholesterol and adiponectin, typical abnormalities found in metabolic syndrome

  • The independent association of trans fatty acid intake and HOMA-insulin resistance (IR) was statistically significant in our study, the clinical relevance of this finding requires further investigation

Read more

Summary

Introduction

High energy and high fat intake characterizes the diet of numerous Western populations. The deleterious role of excessive saturated fatty acid (SFA) intake on the cardiovascular system has been consistently demonstrated. Excessive SFA consumption leads to adipocyte hypertrophy and dysfunction, inducing the secretion of inflammatory factors, which results in a status of chronic low-grade inflammation [3] and is the pathophysiological basis for metabolic and cardiovascular diseases [2]. Hypertrophic adipocytes and macrophages are responsible for the increased expression of pro-inflammatory genes and secretion of cytokines such as interleukins and tumor necrosis factor alpha (TNF-α). The latter was the first adipocytokine found to be directly associated with insulin resistance [5,6]

Objectives
Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.