Abstract

Occupancy of integrin adhesion receptors can alter the functions of other integrins and cause partition of the ligand-occupied integrin into focal adhesions. Ligand binding also changes the conformation of integrin extracellular domains. To explore the relationship between ligand-induced conformational change and integrin signaling, we examined the effect of ligands specific for integrin alpha IIb beta 3 on the functions of target integrins alpha 5 beta 1 and alpha 2 beta 1. We report that binding of integrin-specific ligands to a suppressive integrin can inhibit the function of other target integrins (trans-dominant inhibition). Trans-dominant inhibition is due to a blockade of integrin signaling. Furthermore, this inhibition involves both a conformational change in the extracellular domain and the presence of the beta cytoplasmic tail in the suppressive integrin. Similarly, ligand-induced recruitment of alpha IIb beta 3 to focal adhesions also involves a conformational rearrangement of its extracellular domain. These findings imply that the ligand-induced conformational changes can propagate from an integrin's extracellular to its intracellular face. Trans-dominant inhibition by integrin ligands may coordinate integrin signaling and can lead to unexpected biological effects of integrin-specific inhibitors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.