Abstract

The interligand interactions in coordination compounds have been principally interpreted in terms of cis and trans influences and effects, which can be defined as the ability of a ligand X to affect the bond of another ligand, cis or trans to X, to the metal. This review analyzes these effects/influences in cobalamins (XCbl) and their simple models cobaloximes, LCo(chel)X. Important properties of these complexes, such as geometry, stability, and reactivity, can be rationalized in terms of steric and electronic factors of the ligands. Experimental evidence of normal and inverse trans influence is described in alkylcobaloximes for the first time. The study of simple B12 models has complemented that on the more complex cobalamins, with particular emphasis on the properties of the axial L-Co-X moiety. Some of the conclusions reached for the axial fragment of simple models have also been qualitatively detected in cobalamins and have furnished new insight into the as yet unestablished mechanism for the homolytic cleavage of the CoC bond in the AdoCbl-based enzymes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.