Abstract
Several lines of evidence suggest a potential major role for interferon (IFN) in controlling HIV-1 replication. However, this inhibition is moderate and is reversible upon IFN removal. To achieve prolonged high concentrations of IFN at the site of infection, we devised an SV40-based vector, SV[HIVLTR]IFN, to direct the synthesis of human IFN-alpha2, by employing a virus-trans-activated human IFN-alpha2 gene to be transcribed in response to HIV-1 infection. Expression of IFN-alpha2 was confirmed by Northern and Western blotting, in SV[HIVLTR]IFN-transduced, HIV-1-challenged human lymphocyte lines and primary human lymphocytes. SV[HIVLTR]IFN-transduced cells showed no evidence of HIV-1-related cytophatic effects when challenged with high doses of HIV-1(NL4-3). As measured by supernatant HIV-1 p24 antigen concentration, IFN-alpha2-expressing cell lines and peripheral blood lymphocytes (PBL) were protected from high-dose challenges of HIV-1. rSV40-delivered IFN-alpha2 inhibited gp120 protein synthesis and expression of HIV-1 mRNAs. Finally, Southern analysis revealed that levels of proviral DNA were markedly reduced in SV[HIVLTR]IFN-transduced cells compared to control cultures. IFN-alpha2 expression driven by HIVLTR delivered by an rSV40 vector thus strongly inhibits HIV-1 replication, probably by blocking a preintegration step in HIV-1 infection. Targeted expression of IFN-alpha2 delivered by SV40 can thus repress HIV-1 replication, and may be a useful approach to HIV-1 treatment.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.