Abstract
Conjugated linoleic acid (CLA), which is naturally present in a variety of foods such as milk fat and the meat of ruminant animals, has been demonstrated to exert chemoprotective effects in several tissues in experimental animals. CLA is a collective term, which denotes one or more positional and geometric isomers of octadecadienoic acid, with cis-9,trans-11 (c9t11) and trans-10,cis-12 CLA (t10c12) being the principal isomers in commercial preparations. We observed previously that physiological levels of CLA inhibited HT-29 cell growth, and the growth inhibitory effects of CLA were attributed to the effect of t10c12, but not c9t11. In the present study, we assessed the mechanisms by which physiological levels of CLA and t10c12 induce apoptosis in HT-29 cells. HT-29 cells were cultured for 3 days in serum-free medium in the presence of various concentrations of CLA (0-20 micromol/L) or t10c12 (0-4 micromol/L). Addition of CLA or t10c12 to culture medium resulted in a dose-dependent increase in the numbers of apoptotic cells. The results of western blot analysis of total cell lysates showed that CLA and t10c12 increased the levels of cleaved caspase-9, caspase-3, and poly(ADP-ribose) polymerase but did not alter the levels of Bcl-2 family member proteins. However, these fatty acids were shown to increase the translocation of Bad and Bax to the mitochondria, increase mitochondrial membrane permeability, and induce the release of cytochrome c and Smac/Diablo from the mitochondria. In addition, CLA and t10c12 diminished Akt content and Akt phosphorylation. These findings indicate that physiological levels of t10c12 induce apoptosis in HT-29 colon cancer cells, which is mediated via mitochondrion-mediated events associated with a decline in Akt activity, an increase in the translocation of the pro-apototic Bad and Bax to the mitochondria, and the subsequent disruption of normal mitochondrial membrane potential.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.