Abstract

Tralopyril, an antifouling biocide, widely used in antifouling systems to prevent underwater equipment from biological contamination, which can pose a potential risk to aquatic organisms and human health. However, there is little information available on the toxicity of tralopyril to aquatic organisms. Herein, zebrafish (Danio rerio) were used to investigate the toxicity mechanisms of tralopyril and a series of developmental indicators, thyroid hormones, gene expression and metabolomics were measured. Results showed that tralopyril significantly decreased the heart-beat and body length of zebrafish embryos-larvae exposed to 4.20 μg/L or higher concentrations of tralopyril and also induced developmental defects including pericardial hemorrhage, spine deformation, pericardial edema, tail malformation and uninflated gas bladder. Tralopyril decreased the thyroid hormone concentrations in embryos and changed the transcriptions of the related genes (TRHR, TSHβ, TSHR, Nkx2.1, Dio1, TRα, TRβ, TTR and UGT1ab). Additionally, metabolomics analysis showed that tralopyril affected the metabolism of amino acids, energy and lipids, which was associated with regulation of thyroid system. Furthermore, this study demonstrated that alterations of endogenous metabolites induced the thyroid endocrine disruption in zebrafish following the tralopyril treatment. Therefore, the results showed that tralopyril can induce adverse developmental effects on zebrafish embryos by disrupting the thyroid system and metabolism.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.