Abstract
This paper presents a new method for recognizing trajectory-based human activities. We use a discriminative latent variable model in our proposed method, which considers that human trajectories are made up of some specific motion regimes, and different activities have different switching patterns among the motion regimes. We model the trajectories using Hidden Conditional Random Fields (HCRFs) and the motion regimes act as sub-structures in the model. Experiments using both synthetic and real data sets demonstrate the superiority of our model in comparison with other methods, including Hidden Markov Models (HMM) and Conditional Random Fields (CRFs).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.