Abstract

In this work, the trajectory tracking control of an unmanned aerial vehicle (UAV) has been accomplished using adaptive neuro-fuzzy controllers. The update rules of the proposed controller have been derived based on the sliding mode control theory, where a sliding surface has been generated utilizing the parameters of the neuro-fuzzy controller to direct the error towards zero in a stable manner. To assess the effectiveness of the proposed control scheme, Parrot AR.Drone 2.0 has been utilized as the test platform, on which conventional PID and fuzzy logic controllers have been also implemented to provide means for comparing the performance of the proposed controller. Different reference trajectories have been generated for the real-time experimental studies, in which the discrepancies from these trajectories are used to determine the input signals to be applied to the proposed controllers. The analytical claims have been justified by the obtained results from the real-time experiments in the presence of large nonzero initial errors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.