Abstract

In this study, model predictive control with softening constraints is applied to a non-holonomic wheeled mobile robot for trajectory tracking in the presence of external disturbances. In order to improve real-time robustness of the wheeled mobile robot, a linearised tracking error model is used to predict system behaviours. The proposed control scheme contains a feedforward controller and a feedback controller, in which both control constraints and control increment constraints are considered to achieve trajectory tracking smoothly. Finally, numerical simulations demonstrate the performances of the control scheme.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.