Abstract

AbstractWe present an optimization‐based reference trajectory tracking method for quadrotor robots for slow‐speed maneuvers. The proposed method uses planning followed by the controlling paradigm. The basic concept of the proposed method is an analogy with linear quadratic Gaussian in which nonlinear model predictive control (NMPC) is employed for predicting optimal control policy in each iteration. Multiple‐shooting is suggested over direct‐collocation for imposing constraints when modeling the NMPC. Incremental Euclidean distance transformation map is constructed for obtaining the closest free distances relative to the predicted trajectory; these distances are considered obstacle constraints. The reference trajectory is generated ensuring dynamic feasibility. The objective is to minimize the error between the quadrotor's current pose and the desired reference trajectory pose in each iteration. Finally, we compared the proposed method with two other approaches and showed that the proposed method outperforms the said approaches in terms of reaching the goal without any collision. Additionally, we published a new data set that can be used for evaluating the performance of trajectory tracking algorithms.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call