Abstract

This study describes the design of a parallel spatial manipulator with four degrees of freedom actuated with shape memory alloy (SMA) wire to validate the use of SMA in complicated mechatronics systems. The manipulator has a closed kinematic structure, which includes a fixed base and a moving square platform (end effector). The four arms of the manipulator are SMA wires fastened between the fixed base and the end effector. SMA wire-based actuators replace bulky conventional revolute actuators. This work spotlights the development of an actuator model, dimensional analysis, and design of cascade control strategies of various PID and sliding mode controller in their integral and fractional order configurations. Experimental evaluation of the actuator is performed through trajectory tracking to quantify the different controller configurations. The experimental results indicate that the parallel manipulator associated with SMA wire actuators is the best alternative to conventional motion stages for highly precise micro-positioning and tracking applications in the fields of 3D printing, intricate surgical operations, the medical and pharmaceutical industries, and flight and gaming simulators.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call