Abstract

Flexible robots can be modeled as underactuated multibody systems since they generally have less control inputs than degrees of freedom for rigid body motion and deformation. The flexibilities must be taken into account in the control design. In order to obtain high performance in the end-effector trajectory tracking, an accurate and efficient nonlinear controller is required. In this paper, a nonlinear feedback controller based on the feedback linearization approach using all the states of the system is designed and carefully tested on a very flexible parallel lambda robot. The simulation and experimental results show that the end-effector tracks a trajectory with higher accuracy compared to previous works.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.