Abstract
This article considers the problem of trajectory tracking control for a miniature fixed-wing unmanned air vehicle (UAV). With the UAV equipped with longitudinal and lateral autopilots, we adopt a kinematic model that takes into account the fact that the heading of the UAV is controlled by its roll motion and the autopilot responses to air speed and roll control commands are first order in nature. Backstepping techniques are applied to derive air speed and roll control commands from known air speed and heading control laws that explicitly account for air speed and heading rate constraints of the UAV. Regarding inaccurately known autopilot constants, a parameter adaptation technique is used to estimate autopilot constants. High-fidelity simulation results on a six degree-of-freedom (DOF) 12-state fixed-wing UAV model are presented to show the effectiveness of our approach.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.