Abstract

We present an efficient approach for surface hopping-based nonadiabatic dynamics in the condensed phase. For the systems studied, a restricted Kohn-Sham orbital formulation of the delta self-consistent field (ΔSCF) method was used for efficient calculation of excited electronic states. Time-dependent density functional theory (DFT) is applied to aid excited-state SCF convergence and provide guess electronic state densities. Aside from that the Landau-Zener procedure simplifies the surface hopping between electronic states. By utilizing the combined Gaussian and plane waves approach with periodic boundary conditions the method is easily applicable to full atomistic DFT simulations of condensed-phase systems and was used to study the nonradiative deactivation mechanism of photoexcited diimide in water solution.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.