Abstract
This paper presents the nonadiabatic molecular dynamics simulation combined with the spin-flip time-dependent density functional theory (SF-TDDFT). In contrast to the conventional single-reference electronic structure methods, which have difficulty in describing the S0/S1 conical intersections, the SF-TDDFT can yield the correct topology of crossing points. Thus, one expects that the method can take naturally into account the S1 → S0 nonadiabatic transitions. We adopt Tully's fewest switch surface hopping algorithm by introducing the analytic SF-TDDFT nonadiabatic coupling vector. We apply the proposed method to the photoisomerization reactions of E-azomethane, methanimine, and ethene molecules and reproduce the results of previous studies based on the multireference methods. The proposed approach overcomes the ad hoc treatment of S1 → S0 transition at the single-reference calculation level and affords both the dynamics on the S1 state and the recovery of the S0 state with modest computational costs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.