Abstract
Magnetic nanoparticles (MNPs) have been considered as potential therapeutic agent carrier for the magnetic targeted-drug delivery in the fight against cancer. Trajectories of MNPs in the blood vessel determine the capture and retention ratio, and the final effectiveness of the treatment. In the present study, a theoretical model of MNPs trajectory is deduced at first. Then two kinds of magnets are proposed, and their magnetic field distributions are calculated through the finite element method software of ANSYS. Using the model and magnetic field inputs, the MNPs trajectories are determined, and the influences of the MNP diameter (Rp), the blood flow velocity (vf) and magnetic field intensity (H) on the trajectories are clarified finally. It is found that the proposed method combining the theoretical model and numerical simulation is feasible. The closed magnetic circuit with concave-convex poles has better MNPs retention ratio than that of the open magnetic circuit because it has higher H and Grad (H). LargeRp, lowvf, and high H are good to capture the MNPs. Especiallyvfand H are critical parameters for the retention ratio of MNPs, and highvfand low H may let MNPs escape the magnetic field region.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.