Abstract
We focus on a replanning scenario for quadrotors where considering time efficiency, non-static initial state and dynamical feasibility is of great significance. We propose a real-time B-spline based kinodynamic (RBK) search algorithm, which transforms a position-only shortest path search (such as A* and Dijkstra) into an efficient kinodynamic search, by exploring the properties of B-spline parameterization. The RBK search is greedy and produces a dynamically feasible time-parameterized trajectory efficiently, which facilitates non-static initial state of the quadrotor. To cope with the limitation of the greedy search and the discretization induced by a grid structure, we adopt an elastic optimization (EO) approach as a post-optimization process, to refine the control point placement provided by the RBK search. The EO approach finds the optimal control point placement inside an expanded elastic tube which represents the free space, by solving a Quadratically Constrained Quadratic Programming (QCQP) problem. We design a receding horizon replanner based on the local control property of B-spline. A systematic comparison of our method against two state-of-the-art methods is provided. We integrate our replanning system with a monocular vision-based quadrotor and validate our performance onboard.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.