Abstract

The paper presents a method of planning a collision-free trajectory for a humanoid manipulator mounted on a rail system. The task of the robot is to move its end-effectors from the current position to the given final location in the workspace. The method is based on a redundancy resolution at the velocity level. In addition to this primary task, secondary objectives are also taken into account. The motion of the robot is planned in order to maximize a manipulability measure in purpose of avoiding manipulator singularities. State inequality constraints resulting from collision avoidance conditions are also considered. A computer example involving a humanoid manipulator operating in a three dimensional task space is also presented.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call