Abstract
The trajectory planning of an aerial robotic manipulator system is studied using Hybrid Particle Swarm Optimization (HPSO). The aerial robotic manipulator is composed of an unmanned aerial vehicle (UAV) base and a robotic manipulator. The robotic manipulator is dynamically singular. In addition, strong coupling exists between the UAV base and the robotic manipulator. To overcome the problems, the trajectory planning is studied in the join space using HPSO. HPSO combines superiorities of PSO and GA (Genetic Algorithm), prohibiting particles from becoming trapped in a local minimum. In addition, the control parameters are self-adaptive and contribute to fast searching for the global optimum. The trajectory planning problem is converted into a parameter optimization problem. Each joint trajectory is parameterized with a Bézier curve. The HPSO is implemented to optimize joint trajectories, satisfying specific objectives and imposed constraints. Numerical simulations are also carried out to validate the effectiveness of the proposed method.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.