Abstract

With advantages of linear kinematics equation, no singular pose, regular workspace, the best motion/force transmission performance, 3-CRU parallel robot is potential to perform better when rapid and repetitive grasping/handling in packaging and medicine industry. For this reason, this paper deals with trajectory planning of the 3-CRU parallel robot. The trajectory planning method of the 3-CRU parallel robot is proposed for the first time whose advantage is the robot can arbitrarily increase the interpolation period in the Cartesian space without a twice interpolation in the joint space. This method simplifies the interpolation process of trajectory planning, reduces the occupation of computational resources, improves the computational efficiency of the controller, and benefits the real-time online control. For the problem of residual vibration when the robot stops, the input shaping technology is adopted and time delay compensation strategy is proposed, which improves the positioning accuracy of the moving platform and ensures fixed running time. This paper lays a theoretical and practical foundation for the application of the 3-CRU parallel robot in the future.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.