Abstract
The design of a high-performance guidance and control system for a small-scale helicopterUnmanned Aerial Vehicle (UAV), with an engine OFF flight condition (i.e. autorotation), is known to be a challenging task. It is the purpose of this paper to present a Trajectory Planning (TP) and Trajectory Tracking (TT) system, having onlinecomputational tractability. The presented Flight Control System (FCS) is anchored within the aggregated paradigms of differential flatness based optimal planning, and robust control based tracking. In particular the first real-time feasible, model-based TP and model-based TT, for a small-scale helicopter in autorotation is being demonstrated using a high-fidelity, high-order, nonlinear helicopter simulation.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.