Abstract
Trajectory planning of robot’s center of gravity (CoG) is the main concern when a legged robot is walking. The trajectory of the robot should be framed such that the center of pressure (CoP) of the robot should lie within supporting polygon at all time. This paper deals with the study of support polygon and graphical analysis to find the location of CoG, where the robot has high chances to go to instability. The quadrilateral supporting phases are utilized to avoid these instability locations. Further, the analysis is done to find the timely sequence of lift and touchdown of legs (lift and touch are called as events of legs). Based on the sequence of events and the support polygon analysis, trajectory of the robot is defined, which can produce smooth, steady, and stable robot motion. Though the robot gains static stability by trajectory planning, its dynamic stability should also be verified. This is done using zero moment point (ZMP) method. The analysis done in this paper is for the unswaying robot, walking on flat terrain.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.