Abstract

The rapid growth of space debris poses a serious threat to space exploration activities. Large space debris, such as malfunctioning satellites, are generally uncooperative tumbling objects with flexible appendages. This paper investigates the detumbling scheme for a flexible target using a flexible-base space robot in post-capture phase. This scheme consists of trajectory planning and coordination control, which can bring the target to rest and stabilize the base attitude of the space robot while suppressing the vibrations of the flexible panels. In this paper, a recursive method based on the Newton–Euler formulation is employed to derive the kinematics and dynamics of the combined system. The trajectory planning of the end-effector is converted to a constrained multiobjective optimization problem, whose Pareto front is obtained by the multiobjective particle swarm optimization (MOPSO) algorithm. A coordination controller is developed to track the planned trajectories of the space robot. The presented numerical simulations verify the effectiveness of the detumbling scheme and its robustness to space targets with parametric uncertainties.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.