Abstract

The purpose of this research is to develop an advanced driver assistance system for the integrated longitudinal and lateral guidance of vehicles in critical high-speed lane change manoeuvres. The system consists of two parts: trajectory planning and combined control. At the first, by considering the TV position and the available range of longitudinal acceleration, several trajectories with different accelerations are generated. Then, by taking into account the vehicle and tyre dynamics, the most appropriate trajectory is selected. Therefore, the chosen trajectory is collision free and dynamically feasible. Because the trajectory planning is carried out algebraically, it has low computational cost. This is especially valuable in the experimental implementations. At the second part of the study, using a robust combined longitudinal-lateral controller, the control inputs are determined and transmitted to the brake/throttle and steering actuators. Both in the trajectory planning and combined control design, the nonlinear tyre dynamics and the dynamics of throttle and brake actuators are considered. To evaluate the performance of the proposed guidance algorithm, a full CarSim dynamic model is utilized. The simulation results for critical high-speed lane change manoeuvres confirm that the proposed trajectory planning method works effectively. The tracking error is also very small and the yaw stability is guaranteed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call