Abstract

In this paper, design of an adaptive neural network based interval type-2 fuzzy logic controller (ANNIT2FL), circular and handwriting type trajectory planning are proposed to show ability of a 3-DOF( Degree of Freedom ) Scara type robot manipulator. The kinematic and the dynamic equations are used to obtain equations of motion of robot manipulator and three different rise functions are chosen for desired cartesian trajectory as circular tool trajectory. Then, handwriting type trajectory is created to test controller's performance. Trajectory results of ANNIT2FL controlled robot manipulator are compared with the results of PID control. Simulation results demonstrate the remarkable performance of the proposed control technique.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.