Abstract
PurposeThe non‐uniform fast Fourier transform (NUFFT) involves interpolation of non‐uniformly sampled Fourier data onto a Cartesian grid, an interpolation that is slowed by complex, non‐local data access patterns. A faster NUFFT would increase the clinical relevance of the plethora of advanced non‐Cartesian acquisition methods.MethodsHere we customize the NUFFT procedure for a radial trajectory and GPU architecture to eliminate the bottlenecks encountered when allowing for arbitrary trajectories and hardware. We call the result TRON, for TRajectory Optimized NUFFT. We benchmark the speed and accuracy TRON on a Shepp‐Logan phantom and on whole‐body continuous golden‐angle radial MRI.ResultsTRON was 6–30× faster than the closest competitor, depending on test data set, and was the most accurate code tested.ConclusionsSpecialization of the NUFFT algorithm for a particular trajectory yielded significant speed gains. TRON can be easily extended to other trajectories, such as spiral and PROPELLER. TRON can be downloaded at http://github.com/davidssmith/TRON.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.