Abstract

In multi-robot systems, it is commonly used collaborative approaches to solve complex tasks faster and efficiently. In most of those approaches, the decisions are made centralized or require global information about the objective or the robots, limiting many real implementations. The present work is based on a decentralized solution for the Rendezvous problem, by using only local information about the robots and asymmetrical information about the meeting point. As the primary contribution, we propose a sequential convex programming approach to overcome the non-convexities when physical spaces are taken into account in the optimization problem, which provides the robots with the collision avoidance capability during their movement to the target point. Experiments are also performed to show the effectiveness of the proposed approach.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.