Abstract

In this paper, we consider a cellular-connected un-manned aerial vehicle (UAV) with an information collection and transmission mission for multiple ground targets. Specifically, the UAV is required to collect a fixed amount of information of each target by hovering at a pre-determined location (via e.g., photography/videography/sensing), and transmit all the collected information to the cellular network during its flight. We aim to jointly optimize the UAV's trajectory and the information collection order of the ground targets to minimize the mission completion time. The formulated problem is NP-hard due to the need of visiting the information collection locations for all targets; moreover, the UAV's trajectories over different time durations are coupled in non-convex constraints for ensuring information transmission completion. To handle this difficult problem, we first propose a structured communication protocol between the UAV and the cellular network, which decouples the UAV's trajectory designs in different time durations. Then, under the proposed protocol, we establish an equivalent graph-based model for the considered problem, and devise a low-complexity algorithm for finding an approximate solution by exploiting the problem structure and leveraging graph theory. Numerical results show that our proposed design achieves efficient information collection and transmission, and outperforms various benchmark schemes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call